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1 Introduction

Problems in the domain of balanced binary tree operations usually involve the
students constructing a sequence of transformations to insert or delete a value.
An Intelligent Tutoring System (ITS) in this area must be able to perform auto-
mated assessment of student performance even if there can be multiple correct
solution sequences and the input is graphical in nature. Previous works involve
either generating all possible solutions and finding the closest match with the
student’s answer [1] or restricting the student’s inputs to one predefined solution
[3]. This paper describes a more flexible approach that uses domain knowledge
along with a very small restriction on the input method to determine (1) accu-
rately the correctness of the answer and (2) the location and type of the first
error in the answer.

2 Red-Black Trees

A red-black tree is a self balancing binary search tree that has the following
properties [4]:

1. The nodes of the tree are colored either red or black.
2. The root of the tree is always black.
3. A red node cannot have any red children.
4. Every path from the root to a null link contains the same number of black

nodes.

The top-down algorithm to insert or delete a value from a red-black tree starts
at the root and, at every iteration, moves down to the next node, which is a child
of the current node. At each node, it applies one or more transformation rules so
that when the actual insertion (or deletion) is performed no subsequent actions
are needed to maintain the tree’s properties. Other types of balanced trees also
use a similar approach. In our work we used red-black tree as an exemplar
to evaluate our ideas and implementations, but they should be applicable to
balanced trees in general.
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3 Our Approach

An essential constraint in the assessment environment is that the system does
not provide any hints about the correctness of the answer or any intermediate
states. We developed a web interface that displays a “blank” binary tree of 31
nodes, i.e., the interface looks like a sheet of paper with an outline of a binary
tree that is 5 levels deep. The student submits an answer tree by entering the
value and color of every non-empty node.

In grading the answer, we take an approach similar to [2], which involves
developing a solution module that for any problem will generate a solution in
canonical form using only primitive operators. The system also has a list of
transformations that can potentially belong to a different solution; these are
used to modify the canonical version into any other equivalent form, eliminating
the need to generate all possible solutions and instead relying on heuristics to
find the closest match to the student’s answer. The grading algorithm for both
insertion and deletion operations is as follows (Fig. 1).

1. retrieve the problem (the sequence of numbers to be inserted)
2. generate a correct solution which consists of the transformations (and resultant

trees) for each number to be inserted
3. set the current subproblem to the first subproblem (insertion of the first number)
4. retrieve the generated solution to the current subproblem
5. retrieve the corresponding answer submitted by the student
6. compare the solution and answer trees for each subproblem. If the last tree in

each sequence matches, the subproblem has been solved correctly by the student.
Otherwise, the student is assigned a partial score based on what has been correctly
solved to this point (including the subproblems prior to the current one)

Fig. 1. Grading algorithm for insertion

Once the assessment module has detected that the final state in the student’s
answer is different and therefore incorrect, it goes on to determine (1) where
the first error occurred and (2) the type of error made. Figure 2 describes this
procedure. Currently the algorithm can detect insertion errors in color flip, single
rotate, double rotate and insert. It can also detect deletion errors in drop and
rotate, single rotate, double rotate, recolor root and delete.

4 Evaluation

The system was evaluated on 30 students in a Data Structures class in Fall 2016,
with 120 answers recorded. The evaluation had the following steps:

1. Week 1 - lectures on the material (2.5 h)
2. Week 2, day 1 - pre-test (0.5 h)
3. Week 2, day 1 - use of tutoring system (1 h)
4. Week 2, day 2 - post-test (0.5 h)
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1. retrieve the current subproblem (insertion or deletion of a value)
2. generate the sequence of solution trees for the current subproblem
3. retrieve the sequence of trees submitted by the student
4. set the current tree to the first tree in each sequence (generated and submitted)
5. compare the current tree from the student with the trees in the generated sequence
6. if there is a match, set the current trees to the next tree after the trees match and

repeat with step 5 until all the trees in the student’s sequence have been compared.
7. otherwise, an incorrect transformation was applied. Terminate the algorithm and

return the type of transformation that was attempted.

Fig. 2. Finding The Error In The Tree: starting with the first tree in the student’s
answer, compare with the first tree in the generated solution. Repeat until there is
a tree in the student’s answer that does not map to the generated trees even with
transformations. Use heuristics to try and categorize the error.

The pre and post tests were identical and contained 4 questions, each com-
posed of the insertion (deletion) of 4 to 6 numbers. The students used a web
browser to take the pre and post test using the assessment interface described
in the previous section.

Tables 1 and 2 show a breakdown of the errors made for insertion and deletion
problems. Our algorithm could effectively identify the first error 78% of the time
in insertion problems and 63% in deletion problems. The portion of unrecognized
errors were due to either the students combining multiple steps or performing
completely incorrect transformations.

The system performs comparably to a human grader and can effectively
recognize most single errors. Currently it is unable to detect the combination of
more than one errors or assign partial credit if one step is incorrect but subse-
quent steps are correct based on the resulting tree. Furthermore, we encountered
difficulty in determining whether the errors were in identifying the current node
or the applicable transformation. These are important features to be added in
the next iteration.

Table 1. Distribution of errors made in insertion - pre and post test

Color flip Single rotate Double rotate Insert Unrecognized

Pre test 54.9% 3.7% 8.5% 10.9% 22.0%

Post test 29.4% 8.6% 27.6% 12.0% 22.4%

Table 2. Distribution of errors made in deletion - pre and post test

Drop rotate Single rotate Double rotate Recolor root Delete Unrecognized

Pre test 30.7% 14.5% 6.5% 1.6% 9.7% 37%

Post test 45.7% 8.7% 4.3% 0% 2.2% 39.1%
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5 Conclusion

This paper has described our approach to automated assessment of graphically
inputted answers to red black tree insertion and deletion problems. The approach
has been successful in distinguishing between correct and incorrect answers and
also in generally identifying the location and type of error. There are still addi-
tional features that we intend to implement that would help us to develop a
more effective tutoring system that is customized to the individual student.
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